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Purpose of review

To describe the emerging applications of deep learning in ophthalmology.

Recent findings

Recent studies have shown that various deep learning models are capable of detecting and diagnosing
various diseases afflicting the posterior segment of the eye with high accuracy. Most of the initial studies
have centered around detection of referable diabetic retinopathy, age-related macular degeneration, and
glaucoma.

Summary

Deep learning has shown promising results in automated image analysis of fundus photographs and optical
coherence tomography images. Additional testing and research is required to clinically validate this
technology.
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INTRODUCTION

The growing integration of artificial intelligence in
healthcare promises to reshape and disrupt the prac-
tice of clinical medicine in the coming years. Anal-
ysis of big data stands to impact fields such as
genome analysis, to targeted therapeutic drug dis-
covery, and commercialization of treatments,
among many other applications. Within ophthal-
mology, artificial intelligence is already augmenting
diagnostic imaging capabilities, which may soon
lead to deployment of cost-efficient telemedicine
screening programs worldwide. Although the
majority of these early efforts have focused on the
analysis of color fundus photographs or optical
coherence tomography (OCT) scans for detection
of posterior segment diseases such as diabetic reti-
nopathy, age-related macular degeneration, and
glaucoma, which are covered in this review, emerg-
ing artificial intelligence platforms are being dedi-
cated to other ophthalmologic diseases, including
retinopathy of prematurity [1], cataracts [2,3], cor-
neal ectasia [4,5], and oculoplastic reconstruction
after basal cell carcinoma excision [6].
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UNDERSTANDING DEEP LEARNING

As a result of the surging popularity in mainstream
media, the terms artificial intelligence, machine
learning, and deep learning have been used inter-
changeably at times as synonyms; however, it is
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important to differentiate and distinguish the three.
At the core, these can each be viewed as concentric
circles, with the largest circle being artificial intelli-
gence, and the smallest being machine learning.

Artificial intelligence is the broadest term,
applying to development of computer systems able
to perform tasks by mimicking human intelligence,
such as visual perception, decision-making, and
voice recognition. John McCarthy, widely regarded
as one of the founders of artificial intelligence,
defined it as ‘the science and engineering of making
intelligent machines’ [7].

Machine learning refers to a subfield under the
umbrella of artificial intelligence, which enables
computers to improve at tasks with experience, or
in other words, learn on their own. One of the
pioneers within machine learning, Arthur Samuel,
defined machine learning as a ‘field of study that
gives computers the ability to learn without being
explicitly programmed’ [8]. That is, a machine’s
algorithm allows it to autonomously identify
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KEY POINTS

� Deep learning has been demonstrated in numerous
studies to detect and diagnose various ophthalmic
diseases favorably compared with human graders.

� Additional clinical validation of deep learning models
is required before it can be fully implemented in
clinical practice.

� Immediate future implications of deep learning in
ophthalmology would include automated image
analysis for potential use in teleretinal
screening programs.

Translational research

Cop
patterns in observed datasets, adjust in response to
the data, and predict outcomes without having
explicit preprogrammed rules and models (i.e. if-
then rules).

Finally, deep learning refers to a subset of
machine learning, composed of algorithms that
use a cascade of multilayered artificial neural net-
works for feature extraction and transformation
[9,10

&

]. Drawing inspiration from the structure of
the human mind, convolutional neural networks
consist of thousands of individual neurons capable
of performing complex tasks, such as image recog-
nition and classification, based on pixel or voxel
intensity. Each successive layer in the network uses
the output from the previous layer as input, with the
final layer revealing the diagnostic output. Training
this type of a network requires repeatedly adjusting
the parameters, known as weights, of the connec-
tions based on many teaching examples through a
process called backpropagation. The network
repeats this process over and over, until the diag-
nostic output ultimately agrees with a reference
standard (i.e. what human graders assigned as
ground truth). Use of the term deep, refers to the
number of layers in a neural network, which contain
multiple ‘hidden layers’ of nodes between input and
output nodes. Deep learning, therefore, can be
regarded as an improvement on conventional arti-
ficial neural networks by creating networks with
multiple layers. Learning in this format can be clas-
sified as either supervised (i.e. classification-based)
or unsupervised (pattern analysis-based). The latter
represents one of the more fascinating aspects of
deep learning, where large datasets are analyzed to
discover underlying patterns without the need for
feature engineering. Clinically speaking, instead of
researchers’ hand-coding instructions to an algo-
rithm on what a microaneurysm, hemorrhage, or
neovascular frond may look like on a diabetic fun-
dus photograph, rather, they input an image labeled
as ‘severe nonproliferative diabetic retinopathy,’ for
2 www.co-ophthalmology.com
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example, and with enough labeled data, the com-
puter eventually learns what that is. In order to train
itself, a deep learning neural network is dependent
upon having a variable and large enough dataset
available. In the context of ophthalmology, this
would require access to tens of thousands of images
from a diverse patient demographic (age, sex, and
ethnicity) generated through various acquisition
protocols (multiple clinical sites, different camera
types, mydriatic/nonmydriatic image capture).
Although it is entirely possible that the algorithm
independently appreciates the same classical fea-
tures of diabetic retinopathy, it is also feasible that
it has identified its own pattern recognition of dis-
ease beyond the scope of how humans interpret and
analyze the disease, hence the ‘black box’ of deep
learning. Elucidating what exactly the algorithm
interprets is the subject of ongoing research.
DIABETIC RETINOPATHY

A number of programs have been developed for the
automated detection of diabetic retinopathy,
known as automated retinal image analysis systems
(ARIAS) [11–14]. Such systems have the potential to
significantly improve current diabetic retinopathy,
screening programs by decreasing reliance and bur-
den on manual graders, which may in turn reduce
costs of running these programs and improve over-
all efficiency. In one study by Tufail et al. [15

&

]
retinal images were manually graded by humans
following a standard national protocol for diabetic
retinopathy, screening and then additionally ana-
lyzed by three commercially available ARIAS: iGra-
dingM (Medalytix Group Ltd, Manchester, UK),
Retmarker (Retmarker SA, Taveiro, Portugal), and
EyeArt (Eyenuk, Woodland Hills, California). The
investigators found that EyeArt and Retmarker
achieved acceptable sensitivity for referable retinop-
athy compared with manual graders, while being
more cost-effective options. Although numerous
ARIAS are commercially available, demonstrating
superiority of one over the other, however, can be
difficult as they each employ different algorithms.

Recently, therehavebeenseveral studies reporting
on deep learning algorithms in development for the
detection of diabetic retinopathy,. In 2016, Abràmoff
et al. [16,17] demonstrated that the integration of
convolutional neural networks on top of an existing
lesion-based diabetic retinopathy, detection algo-
rithm resulted in greatly improved performance for
identification of referable diabetic retinopathy, com-
pared with the same algorithm that did not employ
deep learning techniques. Referable diabetic retinop-
athy, is defined as moderate or severe nonproliferative
diabetic retinopathy (NPDR), proliferative diabetic
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retinopathy (PDR), and/or diabetic macular edema
(DME). In their study using the Messidor-2 validation
set (n¼1748 images), sensitivity of the deep learning-
enhanced algorithmwas 96.8%, which was equivalent
to previously published results of the same algorithm
withoutdeep learning (96.8%).However, specificityof
the deep learning-enhanced model was significantly
greaterat 87 versus 59.4%. The areaunder the receiver-
operating characteristic curve (AUC) was 0.980.
Although the sensitivity was not statistically different
from the previous version of the algorithm not
employing deep learning, the higher specificity
obtained by the deep learning integration would be
preferable for potential diabetic screening programs in
order to minimize the number of false positive read-
ings. For comparison, guidelines for diabetic retinop-
athy screening initiatives recommend at least 80%
sensitivity and specificity [18]. This hybrid screening
algorithm, known as IDx-DR, is being commercialized
in partnership with IBM Watson.

Soon afterwards, Gulshan et al. [19
&&

] from Goo-
gle reported on the results of a deep learning algo-
rithm for detecting diabetic retinopathy. Training of
the algorithm was performed using 128 175 macula-
centered fundus photographs obtained from Eye-
PACS (Eye Picture Archive Communication System)
in the United States and three eye hospitals in India
(Aravind Eye Hospital, Sankara Nethralaya, and Nar-
ayana Nethralaya) amongst individuals presenting
for diabetic retinopathy screening. Each of these
images were then graded between three and seven
times amongst a cohort of 54 ophthalmologists, and
nearly 10% of images were randomly selected to be
re-graded by the same physicians in order to assess
for intragrader reliability. Images were assessed for
the degree of diabetic retinopathy based on the
International Clinical Diabetic Retinopathy scale:
none, mild, moderate, severe, or proliferative [20],
and DME was defined as hard exudates within one
disc diameter of the fovea, which is a proxy for
macular edema whenever stereoscopic views are
not available [21]. Once the human grading was
completed, this development set was subsequently
presented to the algorithm for training. For the
second portion of the study, the investigators uti-
lized two sets of new images (EyePACS-1 set¼9963
images, and Messidor-2 set¼1748 images) in order
to test the algorithm against a reference standard of
board-certified ophthalmologists (eight in the first
set, and seven in the second set). In these validation
sets, when the algorithm was programmed for high
sensitivity as would be employed for a screening
protocol, it achieved 97.5 and 96.1% sensitivity
and 93.4 and 93.9% specificity in each of the two
sets, respectively. The AUC was 0.991 for EyePACS-1
and 0.990 for Messidor-2 sets.
1040-8738 Copyright � 2018 Wolters Kluwer Health, Inc. All rights rese
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Earlier in 2017, Gargeya and Leng [22] published
on a separate deep learning algorithm to detect all
stages of diabetic retinopathy, derived from a data-
set of 75 137 color fundus images obtained from the
EyePACS public dataset. In their study, the model
achieved sensitivity and specificity of 94 and 98%,
respectively, with an AUC of 0.97. Additional testing
on the MESSIDOR-2 and E-Ophtha databases for
external validation was performed. With the entire
MESSIDOR-2 set, the algorithm achieved 93% sen-
sitivity and 87% specificity, with an AUC of 0.94,
which was comparable to previously published stud-
ies on diabetic retinopathy, detection using the
same dataset. Of note, the investigators’ model also
evaluated the ability to detect mild diabetic retinop-
athy, rather than just referable diabetic retinopa-
thy,. Specifically, they tested the ability of their deep
learning model to discern healthy retinal images
from those with only mild diabetic retinopathy
(n¼1368 image subset from MESSIDOR-2), and
found that the algorithm struggled to differentiate
between healthy and very early cases of diabetic
retinopathy, failing to detect images that demon-
strated a few small microaneurysms (74% sensitivity
and 80% specificity, with AUC of 0.83). However,
with the E-Ophtha images (n¼405 images), the
algorithm was better able to distinguish amongst
eyes with healthy versus mild diabetic retinopathy
(90% sensitivity and a 94% specificity, with an AUC
of 0.95).

Most recently, in late 2017, Ting et al. [23
&&

]
reported on a deep learning system applied to mul-
tiethnic cohorts of diabetic patients. Although the
images constituting the training set were derived
from the Singapore Diabetic Retinopathy Screening
Program (SIDRP), further external validation was
performed in 10 additional multiethnic datasets
from different countries with diverse clinic-based
populations with diabetes. This was unique given
that the Messidor-2 and other publicly available sets
largely consist of homogenous Caucasian individu-
als. The investigators stressed the importance of
developing and testing deep learning applications
in clinical scenarios that employ diverse retinal
images of varying quality from different camera
types and in representative diabetic retinopathy
screening populations of varying ethnicities.

In addition to detecting referable diabetic reti-
nopathy, and vision-threatening diabetic retinop-
athy (defined as severe NPDR or PDR), the deep
learning algorithm was also trained on identifying
referable glaucoma or age-related macular degen-
eration (AMD) as the investigators noted that
screening for other vision-threatening conditions
should be mandatory for any clinical diabetic
screening program. Referable glaucoma was
www.manaraa.com
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defined as a ratio of vertical cup to disc diameter of
0.8 or greater, focal thinning or notching of the
neuroretinal rim, presence of disc hemorrhage, or
localized retinal nerve fiber layer defects. Referable
AMD was defined as the presence of intermediate
AMD (numerous medium-sized drusen, 1 large
drusen �125 mm in greatest linear diameter, non-
central geographical atrophy, and/or advanced
AMD (central geographical atrophy or neovascular
AMD) according to the Age-Related Eye Disease
Study grading system.

In the primary validation dataset (n¼71 896
images), the AUC of the algorithm for referable
diabetic retinopathy was 0.936, with sensitivity of
90.5% and specificity of 91.6%. For vision-threaten-
ing diabetic retinopathy, AUC was 0.958, with sen-
sitivity of 100% and specificity of 91.1%. For
possible glaucoma, AUC was 0.942, with sensitivity
of 96.4% and specificity of 87.2%. Finally, for AMD,
AUC was 0.931, with sensitivity of 93.2% and spec-
ificity of 88.7%. Among the additional 10 datasets
used for external validation (n¼40 752 images),
AUC range for referable diabetic retinopathy, was
between 0.889 and 0.983.
AGE-RELATED MACULAR DEGENERATION

Recent studies have reported on the use of deep
learning for automated assessment of AMD. Burlina
et al. [24] applied two different deep learning algo-
rithms to solve a two-class AMD classification prob-
lem, categorizing fundus images from the National
Institutes of Health AREDS dataset (n>130 000
images) as either disease free/early stage AMD (for
which dietary supplements are not considered)
versus those with the intermediate or advanced
stage AMD (for which supplements and monitoring
would be considered). The investigators found that
both deep learning methods yielded accuracy that
ranged between 88.4 and 91.6% whereas the AUC
was between 0.94 and 0.96. These findings were
promising and indicated performance levels compa-
rable with physicians.

With the promising results from deep learning
interpretation of fundus photography, efforts
quickly expanded towards OCT analysis, given its
widespread adoption and integration into routine
management of retinal diseases. Several groups have
successfully utilized deep learning in segmentation
of OCT scans for detection of morphological fea-
tures such as intraretinal fluid (IRF) or subretinal
fluid (SRF) from various retinovascular diseases [25–
29]. With respect to AMD, application of deep learn-
ing techniques to OCT may be advantageous to
traditional fundus photography, given the superior
resolution of SD-OCT and potential for more
4 www.co-ophthalmology.com
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precise, earlier detection of nonneovascular and
neovascular disease states.

Lee et al. [30] demonstrated that deep learning
techniques were effective in differentiating OCT
scans from normal individuals versus those afflicted
with AMD. For their study, training and validation
sets were derived using automated extraction of
their institution’s Heideleberg Spectralis OCT imag-
ing database, which were then linked to the corre-
sponding medical record extracted from their Epic
electronic medical record. A total of 80 839 images
(39 765 normal and 41 074 AMD) were used for
training and 20 163 images (8547 normal and
11 616 AMD) were used for validation. The investi-
gators found that at the level of each individual OCT
image, the deep learning algorithm demonstrated
an accuracy of 87.6%, with an AUC of 0.928. When-
ever images from the same OCT acquisition were
aggregated together and averaged the probabilities
from each individual image, the accuracy improved
to 88.9%, with an AUC of 0.938. Furthermore,
whenever they averaged the probabilities from each
image from the same patient, the accuracy addition-
ally improved to 93.5%, with an AUC of 0.975. The
peak sensitivity and specificity with optimal cutoffs
were 92.6 and 93.7%, respectively. In a smaller scale
study using a different deep learning system, Treder
and colleagues similarly reported very high accuracy
in detecting exudative AMD changes on OCT
imaging.

Beyond diagnosing disease, researches are
investigating deep learning methodologies to
identify OCT structural biomarkers in hopes of
predicting clinical treatment outcomes [31

&

,32].
Schmidt-Erfurth and colleagues applied deep
learning techniques to OCT images from 614 clin-
ical trial patients (HARBOR trial) aiming to predict
functional response to intravitreal anti-vascular
endothelial growth factor (VEGF) therapy. In one
study, a deep learning algorithm was applied to
delineate retinal layers and the choroidal neovas-
cularization (CNV)-associated lesion components,
IRF, SRF, and pigment epithelial detachment [31

&

].
These were extracted together with visual acuity
measurements at baseline, months 1–3, and then
used to predict vision outcomes at month 12 by
using random forest machine learning. The group
found that the most relevant OCT biomarker for
predicting the corresponding visual acuity was the
horizontal extension of IRF within the foveal
region, whereas SRF and pigment epithelial
detachment ranked lower. With respect to predict-
ing final visual acuity outcomes after 1 year of
treatment, the algorithm’s accuracy increased in
a linear fashion with each successive month of
data included from the initiation phase, with the
www.manaraa.com
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most accurate predictions being generated at
month 3 (R2¼0.70). In a separate study, the same
group applied their deep learning techniques to
assess whether low and high ranibizumab injec-
tion requirements from the pro re nata (PRN) arm
of the HARBOR trial could be predicted based off of
the OCT scans at baseline, month 1, and month 2
[32]. Of 317 eligible patients, 71 had low (�5), 176
had medium, and 70 had high (�16) injection
requirements during the PRN phase of treatment
extending from month 3 to month 23. The authors
found that classification within low or high treat-
ment demonstrated an AUC of 0.7 and 0.77,
respectively. Additionally, the most relevant
OCT biomarker for prediction of injection burden
was volume of SRF within the central 3 mm at
month 2.
GLAUCOMA

Compared with retinal diseases, there have been
limited, but expanding, applications of deep learn-
ing models within the subspecialty of glaucoma.
Given the multifactorial cause of glaucoma, groups
have been interested in using deep learning to ana-
lyze various inputs, including optic disc photo-
graphs, visual fields, as well as OCT of the nerve
and peripapillary retina.

In one study, Chen et al. [33] developed a deep
learning method for detection of glaucoma based on
funduscopic images of the optic disc using two
different datasets (ORIGA and SCES) containing
glaucoma cases. They reported AUC values for each
dataset of 0.831 (ORIGA) and 0.887 (SCES), which
they found better than previously reported models.

Asaoka et al. [34] compared a deep learning
method [feed-forward neural network (FNN)] with
other machine learning methods to differentiate
visual fields of preperimetric open-angle glaucoma
(OAG) patients (defined as eyes with a glaucomatous
optic disc or fundus appearance, or both, and an
apparently normal visual field) from those of
healthy eyes. In total, 171 preperimetric glaucoma
30-2 visual fields from 51 OAG patients were ana-
lyzed with 108 30-2 visual fields from 87 healthy
patients. The investigators reported an AUC of 0.926
with the deep learning algorithm, which was signif-
icantly greater than other machine learning meth-
ods employed.

Muhammad et al. [35] utilized a hybrid deep
learning method combined with a single wide-
field OCT protocol to distinguish eyes previously
classified as either healthy suspects (n¼47) or
mild glaucoma (n¼57) based on retinal nerve fiber
layer thickness measurements. They reported an
accuracy that ranged from 63.7 to 93.1%,
1040-8738 Copyright � 2018 Wolters Kluwer Health, Inc. All rights rese
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depending on the input map. Overall, their find-
ings outperformed standard OCT and visual field
clinical metrics in distinguishing eyes that were
healthy from those with early glaucoma.
LIMITATIONS

Although there is a rapidly growing body of liter-
ature supporting a role for deep learning applica-
tions within ophthalmology, significant work
remains as the next steps are taken towards its
clinical validation and eventual implementation.
Many of these studies utilized training sets from
relatively homogenous patient populations. Mov-
ing forward, the goal will be to continue training
on larger image sets, which are diverse across not
only the patent demographic but also the type of
images obtained (i.e. different fundus cameras,
wide-field imaging, mydriatic versus nonmydriatic
images, etc.). Ultimately, the algorithms learn
from what they are presented with. Along these
lines, efforts are being undertaken to help create
more uniform reference standards amongst vari-
ous graders and means for resolving grader dis-
agreements, from which training of the algorithms
occurs [36]. Furthermore, as may be expected, the
algorithms appear to encounter difficulties when-
ever distinguishing potential artifacts from true
disease that may be present (i.e. dust particles
on a camera lens versus a potential microaneur-
ysm/hemorrhage). Training these algorithms to
infer when images are of substandard quality for
grading is an area of ongoing research. Perhaps the
greatest concern is the ‘black box’ nature of deep
learning, whereby the rationale for the outputs
generated by the algorithms are not entirely
understood by not only the physicians but also
the engineers who programmed them. This has
created some apprehension in the public eye, and
raises the potential dilemma of how to build pub-
lic trust for something we do not fully compre-
hend. Nevertheless, groups have been attempting
to fill in these gaps in knowledge by generating
heat maps highlighting regions of influence on
each image that contributed to the algorithm’s
conclusion [22]. Lastly, should we arrive at a
future where automated image analysis has been
integrated into clinical practice, there are concerns
over whether this may eventually lead to a reduc-
tion in physician skills and clinical acumen
because of an overreliance on technology
[37,38]. This phenomenon is known as deskilling,
where the skill level required to complete a task is
reduced when components of the task become
automated, leading to inefficiencies whenever
the technology fails or breaks down [37,38].
www.manaraa.com
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THE ROAD AHEAD

Physician-assisted automated interpretation of
images in ophthalmology may eventually help
improve workflow efficiency at the clinic level,
allowing for more direct patient interaction. Out-
side the clinic, deep learning platforms appear
poised to make inroads into telemedicine, on a
global as well as domestic scale. For example, 30–
50% of patients with diabetes do not adhere to
guidelines recommending routine eye examina-
tions to detect for retinopathy [39,40]. Potential
benefits of deep learning-based screening programs
would include: increased efficiency and coverage
(i.e. algorithms are programmed to withstand repet-
itive image processing, can work in parallel, and do
not fatigue), reducing barriers to access for areas
where an eye care provider may not be present,
providing earlier detection of referable eye disease,
and decreasing overall healthcare costs through ear-
lier intervention of treatable disease rather than
resorting to more costly interventions in the more
advanced phases of disease.

Looking further into the future, deep learning
offers the potential to help solve a number of our
overburdened healthcare system’s growing prob-
lems. As of now, these algorithms have been mostly
used for the detection and diagnosis of disease.
However, as efforts grow towards developing data-
sets over an extended period of time from the same
patients, could deep learning start to infer patterns
of disease progression, and potentially make predic-
tions off of them? If those images could then be tied
in with systemic data points (i.e. blood pressure,
hemoglobin A1c, renal function, etc.) from the cor-
responding patients, could it infer more compre-
hensive information, such as the risk of systemic
morbidity/mortality? In this emerging world of pre-
cision medicine, we may one day be able to tailor
treatments and intervention to those at the highest
risk of disease progression at an earlier state. For
example, diabetic retinopathy, could potentially be
reclassified along a scale where a numeric grade
denotes a patient’s risk of developing DME or pro-
gressing to proliferative disease.
CONCLUSION

Despite the current limitations and challenges, deep
learning has arrived in medicine and given great
cause for optimism moving forward. The studies
reviewed here demonstrate potential applications
of deep learning within the field of ophthalmology.
They should serve as a framework that the field will
continue to build upon, refine, and branch out from
in the coming years.
6 www.co-ophthalmology.com
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